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Abstract 

It is shown that the longitudinal velocity of a charged particle moving in a uniform 
magnetic field, and obeying Dirac-Lorentz relativistic equation of motion with radiation 
reaction is constant. Suitable approximate methods, which give fairly accurate results, 
are used to obtain the expression for velocity and displacement along the transverse 
section. They describe the motion completely up to a correcting factor 

~fi i" B ~2~ t ~ B 

for electrons, B in G. 

I. Introduction 

The problem of  the motion of  charge particles moving in an intense 
magnetic field has been studied for quite a long time because of  its applica- 
tion in accelerators. Recently, there has been a revival of  interest in the 
problem due to its application in astrophysics. Since the radiation which 
is e m i t t ~  is quite intense and ~the field strength is also very high, it is 
imperative to include the effect o f  radiation reaction on the motion of  the 
particles. Further, the energy of  the particles are also very high so that 
usual non-relativistic approximations are no longer tenable. Hence, one is 
obliged to integrate the Dirac-Lorentz relativistic equation of  motion with 
radiation reaction, which is given by 

e 
# - ~ r  + v 0  = - -  v x B (1 .1 )  mc 

l - ~ + t O = 0  0.2) 
Dots denote differentiation with respect to proper time, r,  Of' the particle 
a n d  

n = t, I = (1 + v . v )  ' a  

( , . t )  2 2e a ) (1.3) 

~=* '* -  1 + , . , '  "=3-~J  
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In order to solve the equation of" motion, we p~ocecd exactly in the same 
manner as that of  the motion in a constant electric field (sen Gupta, 1971). 
Thus we are interested in those solutions which are regular, as ,~-~ 0. 
In a short communication, the author (sen Gupta, 1970) has shown that 
the longitudinal velocity cv, of  the particle is constant. This is because of  
the fact that 

exp(--r~r ( / k . t  - ~ . v )  -- constant (I.4) 

is an exact integral and the constant is necessarily zero, thus 

= constant = ~ ,  (!.5) 

In the next section we develop a suitable approximate method to integrate 
the equation of  motion along the transverse plane. Section 3 is devoted to 
the discussion of  the locus, h can be emphasised that the method is not 
the usual perturbation method, which is not applicable in this highly 
non-linear problem. After some expedient remarks about the nature of 
radiation emitted in Section 4, the paper concludes with a discussion. 

2. The Motion Along the Transcerse Section 

Equation (1.1) can be expressed as 

t -  r165 + v ~  = f2v x k  (2.1} 

where f2 = eB/mc is the Larmor frequency. It does not admit of  any simple 
integral other than (1.5) and it will be extremely difficult to find the exact 
solution. We will try to find the integrals with successive degree of approxi- 
mation. For  this purpose we first express equation (2.1) in terms of  quantities 
which are of  direct physical importance, namely E - - V ' ( I  + v . v )  (the 
particle energy in unit of  its r~ t  energy) and ~. Thus 

- , ( ~ - -  E 0  = 0 (2 .2 )  

- t ' ~  + ~ ~ ~ 1"22{( 1 - v, ~) E2 - 1} (2.3) 

Next; we observe that the characteristic time concomitant to the radiation 
reaction �9 --. 10 -23 sec but the Larmor frequency, even with B ~" 10 9 G for 
electrons, 1'2 _ 10 ~s sec -~, so that ~D -~ 4 x 10 -4. Thus, it is quite meaningful 
to consider ~D as small and seek solutions whose terms are successively of  
higher orders in d'~. 

Since E is constant when r -- 0, ~ is at least first-order in �9 and the second 
term in equation (2.2) is at least of second-order in ~. Thus, for first-order 
approximation one can write in the third term of equation (2.2), 

/~ --- D{(I - v,Z) E 2 - 1} (2.4) 



to obtain 

- So that 
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t +  d~E{0  - v ,2)E 2 - 1 }  = o  (2.5) 

1 t,~" exp (-2d'Jr)  (2.6) E-- i == I - v, 2 - 

where cv. is the projection of initial velocity on the transverse plane. Let 
its direction be J. By integrating dt/dT = E, ~- can be expressed in terms of  t, 

cosh (~D2V'(I -vla)t+~)=exp(d~T)coshc~ (2.7) 
"L 

where 
cosh~ = v~ 'x /0  - v ? )  (2.s) 

The constant of  integration is so chosen that ~- = 0 at t = 0. From equation 
(2.6) 

k X v.k x v = E 2 v• 2 exp (-2el? 2 ~-) (2.9) 

In order to obtain a better approximation xve add to the right-hand side of  
equations (2.4) and (2.5), ~e~ and eg respectively. The expressions for 
which are obtained from equations (2.4) and (2.5) by differentiation. On 

�9 integration one obtains 

"v,2)Eo i -  iJ = ~xp ( - 2 E ~  ~-) (2.10) 

Hence, 
E -2 ----- (1 - vl 2) - vj 2 exp (-2d'22 ~-)f(r "-~'~" (2.11) 

where 
(2.12) f 0 ' )  = Eo2[l - v ,  2 _ v~" r ( - 2 d ~  ~)] 

(Eo = E(0)). This introduces in the equations (2.6), (2.7) and (2.9) a correct- 
ing factor 1 + 0(e2f22). Since the upper bound of the coefficient of ~2f22 is 
less than unity the expressions (2.6)-(2.9) are valid to a good degree of 
accuracy. It may be noted that even with B _  4 x In z3 G which is the 
threshold field for quantum effect, c2fF _~ 10 ~ .  Further, it is easy to see 
that each step of the successive approximation introduces a factor 
1 +0((2f22). Thus, equation (2.6) for E 2 and equation (2.9) for 
(k x v,k x v) give respectively their dependence on time fairly accurately 
and they are valid for all time. As it is expected E asymptotically tends to 
(1 - via) -I/2 and Ik x v I to 0, so that the radiation emitted by the particle 
is totally at the expense of its energy due to transverse component of initial 
velocity. 

3. TheLocus 

From equation (1.1) one obtains 

# . v  x k -  (V.v x k =.@v x k . v  x k (3.1) 
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Hcnce~ 
d : j  x k . v  
~ t a  n-  -j.~ =D{I +0(~D~);  0.27 

and the transverse component of velocity, cv~ = f~ 

v~. = v~exp(-d22T)  E(jcos-Qr + j  x k sin Dr) (3.3) 

on further integration this leads to 

r =  key, t +  cv t Eexp(-~.Q2 ~-){jsin-Q7 - j  x k c o s . Q : -  f'QE2(! - c~27 • 

• (j cos,Q~- + j x k sin "Qr)} + j~cEo 3 r• - r ,  ~ (3.47 

The constants of integration are so chosen that at t = 0, r = j • kct'• -I 
so that �9 = 0 lies on the axis of the spiral orbit for �9 = 0. The transverse part 
of  the displacement is expressed as a function the proper time :.  In order 
to express this in terms of t, we first observe that the factor exp(2r ") 
can be directly expressed in terms of t from equation (2.77, though, a 
formal expression for COS'QT or si n'Qr can be v,~tten but it is very involved. 
However, one can write for t .~ c -t D -2 

exp (/-Qr) = exp i,Qz { E~ t + dT- v ~. ~ t + 0(,Ea.Q2)} (3.5) 

Basically the motion in the transverse plane is oscillatory. The amplitude 
is gradually decreasing. The time interval, T, between two successive t for 
which exp(/-QT) is the same, is 

7". : 2=rEo.Q"l{I - 4 ~  d'2(2n + 1) r_L2 Eo: + 0(~2.f22)} (3.6) 

where n is a positive integer, thus for small n, T is independent of  "t" and 
the expression (3.5) may be taken as periodic with period 2=EoD -I so long 
as the time interval is very much smaller than ,~-t Q-2 ___ 10-3 scc for B = 106 
G. The expression (3.4) for r shows that in the transverse section the particle 
asymptotically reaches to 

= - ( 3 . ? )  

Thus the particle does not reach the axis ofthe spiral orbit for ~ = 0 but this 
deviation is only along j and depends on the magnitudes v, and v• further, 
it is independent of B. 

4. The Synchraton Radiation 

The nature of the radiation emitted by the particle at great distance from 
the particle is predominantly dependent on the acceleration. It is obtained 
from expression (3.4), as 

d2r cv• 
- ~ - f f f f i ~ e x p [ D T O - , D ) ] ( l + i c D ) ( j x k + i j ) + c . c  (4.1) 
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The nature of the variation of the oscillatory parts with time namely 
exp(:t:iDr) has alreatly been discussed in the previous section. From 
equation (2.7)r one observes that the variation of the remaining factor, 
which slowly and continuously decreases to zero, is very small in the interval 
2,rEoD --n, hence, the radiation emitted gradually decreases gith time. 
The angular distribution of such radiation has been worked out in detail 
by Schwinger (1949). Further, the expression (4.1) shows that the radiation 
reaction introduces a very small phase difference between the two opposite 
circularly polarised radiations. 

5. Discussion 

Our investigation shows that the motion asymptotically tends to uniform 
velocity motion along the lines of force. This can be directly inferred from 
equation (I.I) which admits of a steady state solution, namely �9 x k = O. 
The total displacement along the transverse section is 

c v .  ~{j~(l - v,  ~) Eo 2 - j x k - ~  I} 

The method of successive approximation used in the paper is quite 
different from the usual perturbation expansiea in terms of c as can be 
seen from the expressions (2.6), (2.9) and (2.12). Such expansions will be 
valid only for an extremely small interval of time. On the other hand our 
expressions are valid for all time and are accurate up to a factor I + 0(~2Dz). 
The error involved is practically negligible for almost all physical field 
intensities. Hence, so long as quantum effects are not introduced our results 
are accurate to a sufficiently high degree. The only expression which is of 
restricted validity is (3.5); this is only because we have truncated an expan- 
sion at the second term. If we want the approximate period in the region 
of the instant to, we should get them from the difference of two successive 
roots of equation (2.7), 

eosh (r - t',2) 1. + ~) = exp(2rmc.Q) cosh ~ (5.1) 

for n and n + 1 su~:h that t ,< to  < t,+n. This shows that approximate 
periods tend to the constant 

T(t. --. ,,) = 2~'E. f~t (5.2) 

where E. is 
E(t --~ ee) --- ( i  - v , )  - n ~  (5.3)  

Further,  our approximation is quite distinct from the usual non-relativistic 
approximation in which one puts ~ = 0. But we have started with ~ given 
by equation (2.4). It may not be irrelevant to mention that Shen (1970) 
has also started from an approximate expression for ~, but in order to 
obtain the approximate expression for ~, he has assumed, without justi- 
fication, the transformation property of the field quantities and the equation 
of motion, in non-inertial frames of reference, namely the rest frame of the 
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particle. This is one of the reasons that he finds the longitudinal velocity is 
also decreasing with time. Equat!on (!.5), is an exact integral and if one 
takes the constant of integration to be non-zero the magnitude of the 
longitudinal velocity would increase indefinitely with time instead of 
decreasing with time. 
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